
Machine Learning for Games Directly from Pixels
Ivan Pereira1, Gabriel Sousa1

1Instituto de Informática – Universidade Federal do Maranhão (UFMA)
Av. dos Portugueses, 1966 – 65085-580 – Vila Bacanga – MA – Brazil

Abstract. The creation of new algorithms in hopes of developing a General Ar-
tificial Intelligence through Reinforcement Learning has become a popular topic
in recent times. This is mainly due to the field being fueled by the recents ad-
vances on Deep Learning methods. In this paper we study and experiment with
the new class of algorithms, called Deep Reinforcement Learning, for training
an neural network agent to play games of varying complexity.

Resumo. A criação de novos algoritmos na esperança de eventualmente desen-
volver uma Inteligeência Artificial Geral por Aprendizagem por Reforço se tor-
nou um assunto popular recentemente. Isso é principalmente devido ao campo
de pesquisa ter passado por grandes avanços em métodos de Aprendizagem
Profunda. Nesse artigo, nós estudamos e experimentamos com a nova classe
de algoritmos, chamados Aprendizagem pro Reforço Profundo, para o treino de
uma rede neural agente para jogar jogos de complexidades diferentes.

1. Introduction
The development of Artificial Intelligence (AI) through Reinforcement Learning (RL)
[Sutton and Barto 1998] has become quite popular in spite of recent major advances. RL
is a method based on psychological studies done on animal behaviour, which has an agent
learning how to optimally control their environment. This learning strategy has many
benefits but its largest hindrance is how to represent complex environments such as the
real world.

Many different methodologies for RL have been developed around the world;
In 2014 a paper was published detailing the creation of a new Deep Learning strategy
that had trained an AI that could play several different Atari 2600 games with a single
algorithm[Mnih et al. 2013]. Months later, the startup company that published the pa-
per was acquired by Google and they remain at the forefront of Deep Reinforcement
Learning, developing many new techniques in hopes of reaching a completely General
Artificial Intelligence.

This paper will study different techniques found in literature on how to train an
AI through Reinforcement Learning to play video games directly from the game screen’s
pixels. Video games are a naturally great testbed for AIs since they provide environments
of varying complexities that are relatively simple to validate.

2. Theoretical Background
The method used to formalize the Reinforcement Learning problem that this paper tac-
kles is called the Markov Decision Process. This process is widely used in robotics and
development for robotics and AI around the world. An MDP is a 5-tuple represented by
< S,A, Pa(s, s

′), Ra(s, s
′), γ > where



• S is a finite set of possible states
• A is a finite set of possible actions
• Pa(s, s′) is the probability of executing action a at time twill result in transitioning

from state s to s′

• Ra(s, s
′) is the reward received from transitioning to s′ from s after carrying out

action a
• γ is a percentage that represents the importance between future rewards from pre-

sent ones

This 5-Tuple can be used to represent a stochastic environment containing an
agent, with S representing the possible configurations of the environment and A the ac-
tions that the agent can take. With this, if an agent is set to complete some task in the
environment, then they would simply need to analyze and traverse the MDP in an effici-
ent manner. The rules that decide on how an agent will select an action are called policy.
Finding this policy is the core problem for MDPs.

3. Reinforcement Learning

A Markov Decision Process problem can be solved by different approaches, the most
common ones being dynamic programming and reinforcement learning(RL). The latter
is a branch of machine learning, where unlike the popular supervised learning method it
does not need a set of labeled batches for training, using directly the scalar reward for
each action input given by the MDP environment.

In RL we have the returnRt = rt+1+γrt+2+...+γ
t−1rt called the total discounted

reward. The goal is then to maximize the expected reward from each state st. The value of
the state st under a policy π is defined as V t(s) = E[Rt|st = s] and is simply the expected
return for following policy π from state s. The action value can be easily derived from
it, with Qt(a, s) = E[Rt|st = s, a] being the expected return selecting action a in state s
and following policy π. Finally the goal of RL is to find an optimal action value function
Q∗(a, s) = maxπQ

π(a, s) that tell us the best action for every possible state. The next
sections show two popular distinct approaches to reach this goal.

3.1. Value Based

Value-based methods in RL attempt to learn the policy by iteratively learning a value func-
tion. A common representation of a value function is a lookup table that fits all possible
states of the MDP. With larger MDPs the number of state grows exponentially, rendering
it infeasible to use a table to store all states. We then require function approximators to re-
present the value function, such as a neural network. The new value function is Q(a, s; θ)
with θ as the parameters of the function approximator. The parameters can be updated
by a series of methods, the most popular one being Q-Learning, that directly approximate
the optimal action value function. The learning process occurs when the parameters of θ
are learned iteratively by minimizing a series of loss functions as given in the equation:

Li(θi) = E(r + γmaxa′Q(a
′, s′; θi−1)−Q(a, s; θi))2 (1)

where s′ is the next state and Li is the ith loss function.



3.2. Policy Based
Policy based methods differ from value ones by directly parametrizing the policy π(a|s; θ)
instead of the value function. The update of θ are usually made by performing appro-
ximate gradient ascent on the expected return E[Rt]. In practice we use a estimate of
∇θE[Rt] given as ∇θlogπθ(a, s) that is called a score function. The score function can
take many forms, and the most commonly used is the softmax policy. The complete policy
gradient equation is:

∇θJ(θ) = Eπθ[∇θlogπθ(a, s)Q
πθ(a, s)] (2)

The advantage of this approach is the convergence to local optimum, the effectiveness on
high dimensional action spaces, and the stochastic policy learned, which is very useful
for games like ”rock, paper, scissors”that need random behaviours to not be predictable.

4. Deep Reinforcement Learning
As has been mentioned by the past sections, the greatest problem encountered by re-
gular Reinforcement Learning techniques is how to represent and work with high-level
interpretations of an environment, such as picture or sound; since representing these in
simple tables is completely infeasible due to their complexity. This is exactly why Deep
Reinforcement Learning was conceived. This form of learning makes use of deep neural
networks to approximate the RL Problem’s value function by extracting features from raw
sensory data. Deep neural networks are layers of artificial neural networks, where each
layer of the network creates a more abstract form of representation of the input. The use
of these networks has become commonly used in object and speech recognition and even
in recommendation systems.

The class of deep neural networks applied in this paper is of the deep convolutional
network, which applies the use of layers of tiled convolutional filters to extract and learn
features from images. This form of network mimics the functions of how animals perceive
and represent visual information and is mainly applied in object recognition. This type
of network is perfectly suited for Reinforcement Learning and the next sections will over
how it can be applied.

4.1. Deep Q-Learning
Deep Q-Learning is essentially the Q-Learning method that makes use of a deep neural
network as its approximator function. It was developed and applied by a startup company
called DeepMind in 2014 by having an AI learn how to play classic Atari games such as
Pong and Breakout[Mnih et al. 2013]. Their algorithm was so successful that the paper is
often hailed as the first large step to general artificial intelligence, which is an AI that can
freely adapt to any given situation.

The Deep Q Network functions similarly to the previously described value tables,
but instead of having a table that contains states and the expected rewards for taking an
action in that state, a deep convolutional network is used to receive the state’s current
configuration and output the Q∗(a, s) values of every possible action from the input state.
Despite this, the network isn’t actually trained by by the most recent action and state
configuration, but by random minibatches of saved states in memory. This training tech-
nique is called experience replay and is used to quicken training by avoiding using the
similar-looking transitions consecutively.



Tabela 1. Model Architecture
Layer Input Filter Size Stride Activation Func Output
Convolutional 1 84x84x4 8x8 4 ReLU 20x20x32
Convolutional 2 20x20x30 4x4 2 ReLU 9x9x64
Convolutional 3 9x9x64 3x3 1 ReLU 7x7x64
Fully Conn 1 7x7x64 ReLU 512
Fully Conn 2 512 Linear 18

A common strategy used by many RL algorithms, including Deep Q-Learning,
is the selection of random actions during training. This is done so the AI is encouraged
to explore a wide variety of actions and not overfit and exploit a singular basic strategy.
This is called the ε-greedy exploration, where ε is a percentage that dictates the chance
of the agent performing a random action at that given timestep. This percentage can be
gradually lowered during training until it reaches a specified lower value. Algorithm 1
shows how Deep Q-Learning can be implemented in pseudocode.

initialize replay memory D with capacity N
initialize action-value function Q with random weights
observe initial state s
for episode=1, M do

with random probability ε select a random action at
otherwise select at = argmaxaQ(st, a)
execute at
observe reward rt and new state st+1

store experience < st, at, rt, st+1 > in D
sample a batch of random transitions < sj, aj, rj, sj+1 > from D
calculate target for each minibatch transition
if sj+1 is a terminal state then

tj = rj
else

tj = rj + γmaxa′Q(sj+1, aj)
end
train the Q network using (tj −Q(sj, aj))2) as loss function
update st = st+1

end
Algorithm 1: Deep Q-Learning with Experience Replay and ε-greedy exploration

4.1.1. Model Architecture

The architecture used for the model is described in table 1 and is directly based on the one
in DeepMind’s paper[Volodymyr Mnih 2015]. As input, the model receives a state in the
shape of 4 preprocessed 84x84 frames of game screen. Preprocessing involved resizing
to 84x84 and converting the images into grayscale so the computational complexity of
learning with high complexity images could be assuaged.



4.2. REINFORCE

The reinforce algorithm was proposed by [Williams 1992], and is a monte carlo approach
to the policy gradient defined on equation (2). It uses the return vt as an unbiased sample
of Qπθ(a, s). The new update rule is show together with the reinforce pseudo code on
Algorithm 2:

Initialize θ arbitrarily
for episodes s1, a1, r2...st−1, at−1, rt ∼ πθ do

for t = 1 to T-1 do
θ = θ + α∇θlogπθ(at, st)vt

end
end

A network with 1 hidden layer with 200 hidden units is used as the parametric
function θ, with RMS for optimization and standard backpropagation for training. The
output layer is connected to the softmax function generating a probability distribution for
all actions

5. Experiments

Experiments were done in Python by training the neural network to play Pong
for the Atari 2600 and Mortal Kombat for the Super Nintendo Entertainment Sys-
tem. The Arcade Learning Environment[Bellemare et al. 2013] and Retro Learning
Environment[Bhonker et al. 2016] were used to emulate, extract visual and reward data
for training for the respective games. Figure 1 shows images of both games, note how
much more complex and noise-filled Mortal Kombat is.

Figura 1. Left: Pong;Right: Mortal Kombat

Pong’s reward system was set up so that whenever the network agent scored a
point, it would receive a positive reward of 1. But whenever the opposing player scored a
point, it would receive a reward of -1. A game of Pong ends as soon as one side received a
total of 21 points. This means at the end of a game, if the total sum of rewards ended with
a positive value, the trained AI has won the match. As it can be seen from Figure 2, after
around 20 hours of training and over 2000 games of pong, the Deep Q Network started to
consistently defeat the opposing computer player.



Figura 2. Deep Q-Learning with Pong

Figure 3 details how well training an AI with the reinforce algorithm. The AI star-
ted to provide positive results after around 3500 games, which is clearly much slower than
Deep Q. However, this algorithm has the benefit of being less computationally-demanding
as it doesn’t make use of Experience Replay which consumes a high amount of resources.

Figura 3. Reinforce with Pong

For Mortal Kombat’s case, the rewards were given based on if the neural network
received or did damage, and won or lost a match. When it did damage to the opposing
player or won a match, a positive reward varying on how much damage and on how well



it performed in that match was given. The analogous happened whenever it received
damage or lost a match but with a negative value. After several tests, it was noticed that
these values would confuse the network since most times when it attacked the opposing
player, they would counterattack with a stronger blow, resulting in a net sum of negative
reward. This made it so the network opted to always dodge every attack and end the game
in a tie. In an attempt to solve this, the positive rewards were clipped to 1 while the ones
to -1.

Figure 4 shows the resulting rewards for Deep Q-Learning. It’s possible to see
that the AI never learned a dominant strategy and never started to consistently defeat the
opponent in the time trained. This is most likely due to the hyperparameters used not
being well tuned for Mortal Kombat.

Figure 5 shows the network trained with reinforce, and its performance clearly
is not much different from Deep Q-Learning. This give us hints that maybe a better
configuration of the network can boost both algorithms performance.

Figura 4. Deep Q-Learning with Mortal Kombat

6. Conclusion

Deep Q-Learning and the Reinforce algorithm were proven to be excellent tech-
niques when used with the simple Atari 2600 game. However, these methods
did not seem to work with the more complex Mortal Kombat, since it never con-
verged to a dominant strategy in the time given to train it. In the future, tu-
ning hyperparameters used to train the previous algorithms should be done and
different methods not covered here such as the Asynchronous Advantage Actor-
Critic[Mnih et al. 2016], Double Deep Q-Learning[van Hasselt et al. 2015] and Dueling
Double Deep Q-Learning[Wang et al. 2015] algorithms should be explored.



Figura 5. Reinforce with Mortal Kombat

Referências
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelli-
gence Research, 47:253–279.

Bhonker, N., Rozenberg, S., and Hubara, I. (2016). Playing snes in the retro learning
environment. arXiv preprint arXiv:1611.02205.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1.
MIT press Cambridge.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461.

Volodymyr Mnih, e. a. (2015). Human-level control through deep reinforcement learning.
Nature, 518:529–542.

Wang, Z., de Freitas, N., and Lanctot, M. (2015). Dueling network architectures for deep
reinforcement learning. CoRR, abs/1511.06581.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256.


